Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling.

نویسندگان

  • S R D'Mello
  • K Borodezt
  • S P Soltoff
چکیده

Cultured cerebellar granule neurons die by apoptosis when switched from a medium containing an elevated level of potassium (K+) to one with lower K+ (5 mM). Death resulting from the lowering of K+ can be prevented by insulin-like growth factor (IGF-1). To understand how IGF-1 inhibits apoptosis and maintains neuronal survival, we examined the role of phosphoinositide 3-kinase (PI 3-kinase). Activation of PI 3-kinase has been shown previously to be required for NGF-mediated survival in the PC12 pheochromocytoma cell line. We find that in primary neurons, IGF-1 treatment leads to a robust activation of PI 3-kinase, as judged by lipid kinase assays and Western blot analysis. Activation of PI 3-kinase is likely to occur via tyrosine phosphorylation of the insulin receptor substrate protein. Treatment with two chemically distinct inhibitors of PI 3-kinase, wortmannin and LY294002, reduces PI 3-kinase activation by IGF-1 and inhibits its survival-promoting activity, suggesting that PI 3-kinase is necessary for IGF-1-mediated survival. Death resulting from PI 3-kinase blockade is accompanied by DNA fragmentation, a hallmark of apoptosis. Furthermore, neurons subjected to PI 3-kinase blockade can be rescued by transcriptional and translation inhibitors, suggesting that IGF-1-mediated activation of PI 3-kinase leads to a suppression of "killer gene" expression. In sharp contrast to IGF-1, elevated K+ does not activate PI 3-kinase and can maintain neuronal survival in the presence of PI 3-kinase inhibitors. Therefore, survival of granule neurons can be maintained by PI 3-kinase dependent (IGF-1-activated) and independent (elevated K+-activated) pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization- and insulin-like growth factor I-mediated survival of cerebellar granule cells.

Depolarizing concentrations of potassium promote the survival of many neuronal cell types including cerebellar granule cells. To begin to understand the intracellular mediators of neuronal survival, we have tested whether the survival-promoting effect of potassium depolarization on cerebellar granule cells is dependent on either mitogen-activated protein (MAP) kinase or phosphatidylinositol 3-k...

متن کامل

Parallel phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways subserve the mitogenic and antiapoptotic actions of insulin-like growth factor I in osteoblastic cells.

IGF-I is an endocrine and paracrine regulator of skeletal homeostasis, principally by virtue of its anabolic effects on osteoblastic cells. In the current study, we examined the intracellular signaling pathways by which IGF-I promotes proliferation and survival in SaOS-2 human osteoblastic cells. Inhibition of each of the phosphatidylinositol-3 kinase (PI-3 kinase), p42/44 MAPK, and p70s6 kinas...

متن کامل

Insulin-like growth factor (IGF)-I regulates IGF-binding protein-5 gene expression through the phosphatidylinositol 3-kinase, protein kinase B/Akt, and p70 S6 kinase signaling pathway.

Expression of the insulin-like growth factor-binding protein 5 (IGFBP-5) gene in vascular smooth muscle cells is up-regulated by IGF-I through an IGF-I receptor-mediated mechanism. In this study, we studied the possible involvement of the mitogen-activated protein kinase (MAPK) and PI 3-kinase signaling pathways in mediating IGF-I-regulated IGFBP-5 gene expression. The addition of Des(1-3)IGF-I...

متن کامل

Insulin-like growth factor 1 inhibits extracellular signal-regulated kinase to promote neuronal survival via the phosphatidylinositol 3-kinase/protein kinase A/c-Raf pathway.

Extracellular signal-regulated kinase (ERK) activation has been shown to promote neuronal death in various paradigms. We demonstrated previously that the late and sustained ERK activation in cerebellar granule neurons (CGNs) cultured in low potassium predominantly promotes plasma membrane (PM) damage. Here, we examined the effects of a well established neuronal survival factor, insulin-like gro...

متن کامل

Regulation of vascular smooth muscle cell apoptosis. Modulation of bad by a phosphatidylinositol 3-kinase-dependent pathway.

Our objective was to define the signaling mechanisms by which mitogens such as insulin-like growth factor-I (IGF-I) regulate vascular smooth muscle cell (VSMC) apoptosis. We confirmed that IGF-I inhibits serum withdrawal-induced apoptosis of cultured VSMCs in a dose-dependent and time-dependent fashion. To test the hypothesis that the phosphatidylinositol (PI) 3-kinase signaling pathway regulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 1997